Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25435, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333865

RESUMEN

Foam flooding by Foam Assisted Water-Alternating-Gas (FAWAG) is an important enhanced oil recovery method that has proven successful in experimental and pilot studies. The present study is carried out to monitor the movement of the foam front once injected into the porous medium. This study aims to investigate applications of resistivity waves to monitor foam propagation in a sandstone formation. In the present lab-scale experiments and simulations, resistivity measurements were carried out to monitor the progression of foam in a sand pack, and the relationships between foam injection time and resistivity, as well as brine saturation, were studied. The brine saturation from foam simulation using CMG STAR is exported to COMSOL and calculated true formation resistivity. A diagram was produced summarizing the progression of foam through the sand pack in the function of time, which enabled us to establish how foam progressed through a porous medium. A surfactant and brine mixture was injected into the sand pack, followed by nitrogen gas to generate the foam in situ. As foam progressed through the sand pack, resistance measurements were taken in three zones of the sand pack. The resistance was then converted into resistivity and finally into brine saturation. As foam travels through the sand pack, it is predicted to displace the brine initially in place. This gradually increases each zone's resistivity (decreases the brine saturation) by displacing the brine. Also, an increase in the surfactant concentration results in higher resistivity. Finally, a comparison of three different surfactant concentrations was evaluated in terms of resistivity results, water saturation, and foam propagation monitoring to obtain the optimum surfactant concentration involved in foam flooding.

2.
ACS Omega ; 9(5): 5265-5272, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343923

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that may contaminate various water sources and pose serious dangers to human health and the environment. Due to their capacity for size-based separation, nanofiltration membranes have become efficient instruments for PAH removal. However, issues such as membrane fouling and ineffective rejection still exist. To improve PAH rejection while reducing fouling problems, this work created a new gradient cross-linking poly(vinylpyrrolidone) (PVP) nanofiltration membrane. The gradient cross-linking technique enhanced the rejection performance and antifouling characteristics of the membrane. The results demonstrated that the highest membrane flow was achieved at a 0.15% SDS-PVP membrane. There is a trade-off between membrane flux and salt rejection since salt rejection increases with SDS owing to the growth of big pores. The membrane flux was reduced for the 0.25% SDS-PVP membrane owing to poor SDS dispersion. The prepared membrane showed enhanced removal efficiencies for the removal of the PAH compounds. The PVP membrane has the potential to be used in several water treatment applications, improving water quality, and preserving the environment.

3.
ACS Omega ; 8(20): 17869-17879, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251131

RESUMEN

Rice husk ash (RHA), a low-cost biomaterial, was utilized to form bio-oil from pyrolysis in a batch-stirred reactor, followed by its upgradation using the RHA catalyst. In the present study, the effect of temperature (ranging from 400 to 480 °C) on bio-oil production produced from RHA was studied to obtain the maximum bio-oil yield. Response surface methodology (RSM) was applied to investigate the effect of operational parameters (temperature, heating rate, and particle size) on the bio-oil yield. The results showed that a maximum bio-oil output of 20.33% was obtained at 480 °C temperature, 80 °C/min heating rate, and 200 µm particle size. Temperature and heating rate positively impact the bio-oil yield, while particle size has little effect. The overall R2 value of 0.9614 for the proposed model proved in good agreement with the experimental data. The physical properties of raw bio-oil were determined, and 1030 kg/m3 density, 12 MJ/kg calorific value, 1.40 cSt viscosity, 3 pH, and 72 mg KOH/g acid value were obtained, respectively. To enhance the characteristics of the bio-oil, upgradation was performed using the RHA catalyst through the esterification process. The upgraded bio-oil stemmed from a density of 0.98 g/cm3, an acid value of 58 mg of KOH/g, a calorific value of 16 MJ/kg, and a viscosity 10.5 cSt, respectively. The physical properties, GC-MS and FTIR, showed an improvement in the bio-oil characterization. The findings of this study indicate that RHA can be used as an alternative source for bio-oil production to create a more sustainable and cleaner environment.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986025

RESUMEN

Nanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities. The different shapes of the cavities have several advantages in multiple applications, e.g., L-shaped cavities used in the cooling systems of nuclear and chemical reactors and electronic components. Open cavities such as ellipsoidal, triangular, trapezoidal, and hexagonal are applied in electronic equipment cooling, building heating and cooling, and automotive applications. Appropriate cavity design conserves energy and produces attractive heat-transfer rates. Circular microchannel heat exchangers perform best. Despite the high performance of circular cavities in micro heat exchangers, square cavities have more applications. The use of nanofluids has been found to improve thermal performance in all the cavities studied. According to the experimental data, nanofluid use has been proven to be a dependable solution for enhancing thermal efficiency. To improve performance, it is suggested that research focus on different shapes of nanoparticles less than 10 nm with the same design of the cavities in microchannel heat exchangers and solar collectors.

5.
Materials (Basel) ; 15(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269163

RESUMEN

Membrane fouling is a major hindrance to widespread wastewater treatment applications. This study optimizes operating parameters in membrane rotating biological contactors (MRBC) for maximized membrane fouling through Response Surface Methodology (RSM) and an Artificial Neural Network (ANN). MRBC is an integrated system, embracing membrane filtration and conventional rotating biological contactor in one individual bioreactor. The filtration performance was optimized by exploiting the three parameters of disk rotational speed, membrane-to-disk gap, and organic loading rate. The results showed that both the RSM and ANN models were in good agreement with the experimental data and the modelled equation. The overall R2 value was 0.9982 for the proposed network using ANN, higher than the RSM value (0.9762). The RSM model demonstrated the optimum operating parameter values of a 44 rpm disk rotational speed, a 1.07 membrane-to-disk gap, and a 10.2 g COD/m2 d organic loading rate. The optimization of process parameters can eliminate unnecessary steps and automate steps in the process to save time, reduce errors and avoid duplicate work. This work demonstrates the effective use of statistical modeling to enhance MRBC system performance to obtain a sustainable and energy-efficient treatment process to prevent human health and the environment.

6.
Materials (Basel) ; 14(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885576

RESUMEN

The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron-hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping.

7.
Materials (Basel) ; 14(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683764

RESUMEN

The conventional open ponding system employed for palm oil mill agro-effluent (POME) treatment fails to lower the levels of organic pollutants to the mandatory standard discharge limits. In this work, carbon doped black TiO2 (CB-TiO2) and carbon-nitrogen co-doped black TiO2 (CNB-TiO2) were synthesized via glycerol assisted sol-gel techniques and employed for the remediation of treated palm oil mill effluent (TPOME). Both the samples were anatase phase, with a crystallite size of 11.09-22.18 nm, lower bandgap of 2.06-2.63 eV, superior visible light absorption ability, and a high surface area of 239.99-347.26 m2/g. The performance of CNB-TiO2 was higher (51.48%) compared to only (45.72%) CB-TiO2. Thus, the CNB-TiO2 is employed in sonophotocatalytic reactions. Sonophotocatalytic process based on CNB-TiO2, assisted by hydrogen peroxide (H2O2), and operated at an ultrasonication (US) frequency of 30 kHz and 40 W power under visible light irradiation proved to be the most efficient for chemical oxygen demand (COD) removal. More than 90% of COD was removed within 60 min of sonophotocatalytic reaction, producing the effluent with the COD concentration well below the stipulated permissible limit of 50 mg/L. The electrical energy required per order of magnitude was estimated to be only 177.59 kWh/m3, indicating extreme viability of the proposed process for the remediation of TPOME.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...